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Abstract

Reasoning the semantic meaning of road scene is essen-
tial for UAV systems to plan how to act properly. How-
ever, the visual observation of road scene differs a lot under
different weather conditions, which may cause self-driving
system drastically fail. In this project, we aim at learning
unsupervised domain adaptation on road scene segmenta-
tion under different weather conditions, which is less stud-
ied in literature. We train semantic segmentation on a cer-
tain weather, and adopt unsupervised adversarial training
to transfer the segmentation model to the target weather
condition. First, we make use of synthetic dash-cam data
from SYNTHIA datasets, to explore the domain shift of cross
weather adaptation. Next, in order to examine our method
could be applied to the real image, we conduct experiment
in the MVD dataset. Finally, we perform an experiment us-
ing datasets from CARLA simulator for autonomous driving
systems to prove that our method could be generally ap-
plied to different datasets for future applications. We show
by experiment that our proposed method effectively align
cross-weather data in feature space, and successfully adapt
segmentation model to different weather conditions.

1. Introduction

Recent developments of technologies in computer vi-
sion, deep learning, and articial intelligence have led to the
raise of building autonomous driving systems and robotic
navigation to mapping and categorizing the natural world.
From recognizing particular objects to understand the corre-
sponding driving environments, segmentation of road scene
is among the key module for a successful autonomous driv-
ing system. With a sufficient amount of pixel-wise anno-
tations, current computer vision algorithms already show
promising performances on the above task. However, col-
lecting and labeling training data for pixel-wise semantic
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Figure 1. Overview of domain adaptation for segmentation of road
scene.

segmentation task costs a lot of human labor to annotate
these data, which is a time-consuming and expensive pro-
cess. In addition, when one applies pre-trained segmenters
to a road scene in different cities, driving routes and weath-
ers, which are different from training data, the performance
of results would be degraded due to dataset biases. The rea-
son is that current approaches are sensitive to the large vari-
ations due to changes in appearances, objects and lighting.
Thus, how to suppress the dataset bias would be important
when there is a necessity to apply road scene segmenters to
road scenes in different conditions.

To alleviate this problem, people propose an unsuper-
vised learning framework for transferring semantic segmen-
tation across image domains, making it particularly appeal-
ing to learn to share and transfer information between re-
lated settings. Recently, Chen et al,[3] presented an un-
supervised domain adaptation method for road scene se-
mantic segmentation across different cities. Chen et al,[4]
presented a model Reality Oriented ADaptation Network
(ROAD-Net) for semantic segmentation of urban scenes by
learning from synthetic data. Hoffman et al.[5] propose
fully convolutional networks with domain adversarial train-

1



ing on domain shifts between different cities, seasons and
from synthetic to real. These works focuses on road scene
segmentation with different road scenes, city environment
and seasons; however, cross-weather adaptation is less stud-
ied. Thus, how to suppress the dataset bias would be critical
when there is a need to deploy road scene segmenters to dif-
ferent weathers.

In this work, we propose unsupervised transfer learn-
ing for a road scene segmentation under different weather
conditions. Here, we focus on global domain adaptation
to align cross domain data in feature space so that we can
apply the same segmentation model. Our proposed model
is able to adapt a pre-trained segmentation model from
source weather to target weather, while only the collection
of unlabeled road scene images of one kind of the weather.
We conduct experiments to demonstrate the issue of differ-
ent weather discrimination using a state-of-the-art semantic
segmenter. Then, we will verify the effectiveness of our
proposed method across different datasets domain adapta-
tion task under different weathers. By comparing it with
baseline and upper bound, our proposed method achieves
apparently better performance than the baseline in most
cases.

We evaluate our approach using multiple large-scale
datasets. First, we make use of synthetic dash-cam data
from SYNTHIA datasets, to explore the domain shift of
cross weather adaptation. Next, we perform an experiment
using datasets from CARLA simulator for autonomous
driving systems to prove that our method could be gener-
ally applied to different datasets for future applications. Fi-
nally, in order to examine our method could be applied to
the real image, we conduct experiment in the MVD dataset
to demonstrate that our method has potential to apply in
the real autonomous driving systems and robotic navigation
systems.

The main contributions of our project are summarized as
follow:

• We use experimental result to point out the problem
that segmentation performance degrades a lot for dif-
ferent weather conditions, which is less studied in pre-
vious literature.

• There is few existing dataset providing weather anno-
tations. We collect a road scene segmentation dataset
by CARLA simulator, which contains 6k images under
6 weather conditions.

• We show by experiment that unsupervised adversarial
training effectively align cross-weather data in feature
space, and successfully adapt segmentation model to
different weather conditions.

2. Related Works

2.1. Semantic Segmentation

Semantic segmentation is a highly active field and leads
the recent breakthrough in computer vision with large
amount of methods proposed. Traditional works in seman-
tic segmentation are typically based on manually designed
image features. With the recent development of deep learn-
ing, learned representation demonstrates its power in many
computer vision tasks. Here, we briefly review some of
the works which focus on Convolutional Neural Networks
(CNN)-based semantic segmentation, which has been suc-
cessfully applied to predict dense pixel-wise semantic la-
bels.

Long et al.[7] formulates semantic segmentation as a
per-pixel classication problem by building fully convolu-
tional networks that take input of arbitrary size and produce
correspondingly-sized output with efficient learning and in-
ference. Badrinarayanan et al.[1] present a novel and prac-
tical deep fully convolutional neural network architecture
for semantic pixel-wise segmentation termed SegNet. The
main motivation behind SegNet was the need to design an
efficient architecture for road and indoor scene understand-
ing which is efficient both in terms of memory and compu-
tational time. Ronneberger etal.[9] present a network and
training strategy that relies on the strong use of data aug-
mentation to use the available annotated samples more effi-
ciently in biomedical segmentation applications. DeepLab
[2] system re-purposes networks trained on image classifi-
cation to the task of semantic segmentation by incorporating
Conditional random led (CRF) with CNN to reason about
spatial relationship. Zhao etal. [12] used Pyramid Pooling
Module with the proposed pyramid scene parsing network
(PSPNet) to encode the global and local context, which
achieved state-of-the-arts results on multiple datasets.

Most of models have good performance in a supervised
setting, but performance can be surprisingly poor under do-
main shifts that appear mild to a human observer. For ex-
ample, training on different cities, geographic regions and
weather conditions may result in significantly degraded per-
formance due to pixel-level distribution shift. Hoffman et
al. [5] presented fully convolutional networks with domain
adversarial training for global domain alignment, while
leveraging class-aware constrained multiple instance loss
for transferring spatial layout. They demonstrated the effec-
tiveness of their method on domain shifts between different
cities, seasons and from synthetic to real. However, cross-
weather adaptation is less studied. In this work, we aim
at learning domain adaptation on road scene segmentation
under different weather conditions.
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Figure 2. Our model is composed of two components, segmentation model and domain classifier. We adopt fcn8s as our segmentation
model and a two-layer neural network as the domain classifier. For the segmentation model part, it is a two-stream model: one for source
domain image IS and one for the target domain image IT which share the same weights. The output of the segmentation model for two
domains are the semantic segmentation prediction ŶS and ŶT respectively. Its objective is to segment the image and also learn the feature
that domain classifier cannot discriminate. On the other hand, the objective of domain classifier is to discriminate features from both
domains, which is designed as a binary classifier. The input of the domain classifier is conv5 feature from the segmentation model, and the
output of which is the prediction of the domain label.

2.2. Domain Adaptation

In conventional machine learning, people train and test
data which are sampled independently from an identical dis-
tribution. However, in real world scenarios, this strategy of-
ten leads to a significant performance drop on the test data
when applying the trained model. Thus, domain adaptation
aims to decrease the impact of distribution mismatch such
that the generalization ability of the learned model can be
improved on the target domain. In computer vision, domain
adaptation has been widely investigated as an image classi-
fication problem. Recently, the community start to pay at-
tention to domain shift problem in semantic segmentation.
Here, we focus on domain adaptation on road scene seg-
mentation.

Hoffman et al. [5] presented fully convolutional net-
works with domain adversarial training for global do-
main alignment to have good performance different set-
tings on multiple large-scale datasets, including adapting
across various real city environments, different synthetic
sub-domains, from simulated to real environments. Chen et
al, [3] presented an unsupervised domain adaptation method
for road scene semantic segmentation, which alleviates
cross-domain discrimination on road scene images across
different cities. Based on Generative Adversarial Network,

Huang et al, [6] proposed an image-to-image translation
network for generating large-scale trainable data for vehi-
cle detection algorithms. Chen et al, [4] presented a new
model Reality Oriented ADaptation Network (ROAD-Net)
for semantic segmentation of urban scenes by learning from
synthetic data.

These works focuses on road scene segmentation with
different city environment; however, cross-weather adapta-
tion is less studied. In this work, we aim at learning do-
main adaptation on road scene segmentation under different
weather conditions.

3. Our Method

In this section, we first formulate the problem of domain
adaptation on semantic segmentation. Next, we describe the
details of the segmentation model and domain adaptation
respectively. Finally, we provide implementation details for
reproduction.

3.1. Problem Formulation

In this project, we aim at learning unsupervised do-
main adaptation on semantic segmentation under different
weather conditions. For this domain adaptation problem,
we first need to learn our main task, semantic segmentation,
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Figure 3. Our model consists of two parts: segmentation model
and domain classifier. The objective of the former is to segment
the image and also learn the feature that domain classifier cannot
discriminate, so it is optimized with Lseg (pink) and Lda (blue).
On the other hand, the objective of domain classifier is to discrim-
inate features from both domains, which is designed as a binary
classifier. Thus, it’s optimized with Ldc (red). These two compo-
nents have adversarial objectives, and they are trained iteratively.

on a certain weather (source domain S), and then we con-
sider leveraging the learnt knowledge to the target weather
condition (target domain T ). Semantic segmentation in
source domain aims at predicting semantic labels for each
pixel ŶS ∈ RH×W in the given input image IS ∈ RH×W ,
which is optimized with the ground truth semantic labels of
the image YS ∈ RH×W . Note that H and W denote image
height and width respectively. Likewise, for target domain
image IT ∈ RH×W , our goal is to predict the semantic la-
bels for each pixel ŶT ∈ RH×W in the given image. How-
ever, we can’t access to the ground truth label YT ∈ RHxW
during training since we consider transferring segmentation
model in an unsupervised fashion.

3.2. Semantic Segmentation

We consider Fully Convolutional Network (FCN) pro-
posed by [7] as our segmentation model. To be more spe-
cific, we adopt FCN-8s model which is based on VGG-Net
[11] with 16 layers. VGG-Net is a commonly adopted Con-
volutional Neural Network (CNN), which extracts coarse-
to-fine features of the input image layer by layer. The out-
put layer of FCN-8s is formed of the ensemble of the output
of Pool3, Pool4 and Conv7 layers, which capture different
hierachies of features of the input image. Since the fea-
ture map is downsized twice after each convolutional layer,
we perform upsampling to resize feature maps to the orig-
inal image size correspondingly. We sums the 2x upsam-

pled conv7 (convolutionalized fc7) with pool4, upsamples
them with a stride 2 transposed convolution and sums them
with pool3, and applies a transposed convolution layer with
stride 8 on the resulting feature maps followed by a Soft-
max layer to obtain the segmentation map R ∈ RK×H×W ,
where K, H and W denotes number of semantic classes,
image height and image width respectively. For each pixel
in the image, the semantic label prediction is obtained by
selecting the class which has largest probability as follows,

ŷhw = argmax
k∈|K|

pθS (Rhw)k. (1)

The segmentation model is parameterized with θS . and is
optimized with pixel-wise cross-entropy loss, as follows,

Lseg = −
∑
Is∈S

∑
h∈H

∑
w∈W

∑
k∈K

Y kh,wlog(pθS (R
S
hw)) (2)

3.3. Domain Adaptation

Our goal is to learn a semantic segmentation model
which can be adapted to the unlabeled target domain T .
If there is no domain shift between the source and target
domains then one could simply apply the source model di-
rectly to the target without an adaptive approach. However,
there is commonly a difference between the distribution of
the source labeled domain and the target test domain. In or-
der to minimize the domain shift between representations of
the source and target data, adversarial learning is adopted,
whereby simultaneously a domain classifier is trained to
best distinguish the source and target distributions and the
representation space is updated according to the inverse ob-
jective.

Figure 2 shows the overall framework of our model,
which is composed of two components, segmentation
model and domain classifier. The segmentation model is
a two-stream model: one for source domain and one for the
target domain which share the same weights. Its objective is
to segment the image and also learn the feature that domain
classifier cannot discriminate. On the other hand, the ob-
jective of domain classifier here is to discriminate features
from both domains, which is designed as a binary classi-
fier. The objective of the two components is adversarial,
and they are trained iteratively as shown in Figure 3. We
describe the details of these components below.
Domain Classifier. The domain classifier is designed as
a two-layer neural network, which is parameterized with
θD. Its objective is to distinguish features from different
domains; therefore, the domain classification loss is defined
as a binary cross-entropy loss, as follows,

Ldc = −
∑
IS∈S

∑
h∈H

∑
w∈W

log(pθD (F
S
hw))

−
∑
IT ∈T

∑
h∈H

∑
w∈W

log(1− pθD (F Thw)),
(3)
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where FShw and Fhw denote the source and target represen-
tation of each units from Conv5 layer, respectively.
Segmentation Model. As we introduce in Sec.3.2, FCN-8s
based on VGG-16 is adopted as our segmentation model.
The objective of the segmentation model is to segment the
image and also learn the feature that domain classifier can-
not discriminate.

As we define the domain classification loss above, we
define the inverse domain classification loss, Linvdc as fol-
lows,

Linvdc = −
∑
IS∈S

∑
h∈H

∑
w∈W

log(1− pθD (FShw))

−
∑
IT ∈T

∑
h∈H

∑
w∈W

log(pθD (F
T
hw))

(4)

If we only consider Linvdc for domain adversarial training,
the training procedure may be unstable. Hence, we consider
balancing the both losses as our domain adversarial loss as
follows,

Lda = Ldc + Linvdc . (5)

With the above loss terms defined, the overall loss of the
segmentation model can be written as,

Ltotal = Lseg + λLda (6)

where λ is the regularization term for the global domain
adversarial loss, which is 0.00001 in our case.
Iterative Training. As shown in Figure 3, with these defi-
nitions, we may now describe the alternating minimization
procedure.

min
θD

Ldc (7)

min
θS

[Lseg + λLda] (8)

Optimizing these two objectives iteratively amounts to
learning the best possible domain classifier for relevant im-
age regions (Eq. 7) and then using the loss of that domain
classifier to inform the training of the image representations
so as to minimize the distance between the source and target
domains (Eq. 8).

3.4. Implementation Details

We use FCN-8s as our based segmentation model. The
input size of FCN-8s is 380x640 for the SYNTHIA dataset,
while for the CARLA/MVD dataset, the input size is
600x800. For the domain classifier, the first fully connected
layer has size 512 the size of the second fully connected
layer is 64 for the SYNTHIA/CARLA dataset and 128 for
the MVD dataset respectively. Our best model is chosen ac-
cording to the evaluation on the validation set. We train our
segmentation model with learning rate 0.00024.

Spring Summer Fall Winter

Dawn Day Sunset Night

Fog Softrain Rain Rain night

Figure 4. SYNTHIA dataset.

Clearnoon Clearsunset Wetnoon

Softrainnoon Hardrainnoon Cloudynoon

Figure 5. CARLA dataset.

Sunny Cloudy

Figure 6. MVD dataset.

4. Dataset
We briefly introduce the datasets we use in our experi-

ment. Existing road scene datasets like Synthia [10], MVD
[8] provide labels for weather conditions. We use these
datasets for our experiment. Furthermore, We build up a
synthetic dataset with CARLA 1 simulators.

SYNTHIA is a synthetic collection of images of road
scenarios, containing 13 classes with different scenarios and
sub-conditions. There are 7 sequences, covering different
scenarios (European style town, modern city, highway and
green areas) with several sub-sequences, such as seasons
(Spring, Summer, Fall, Winter), weathers condition (sunny,
cloudy, rain, snow, fog), and illuminations condition (Sun-
set, Dawn, Night). Also, there are a variety of dynamic ob-
jects, including cars, pedestrians and cyclists. These frames
are captured by 8 RGB cameras forming a binocular 360
camera, 8 depth sensors. In this task, we take SEQS-05

1http://carla.org/
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(NewYork-like city), providing 8k images random images
from all the sequences, as source domain data.

CARLA is a simulator to support development, training,
and validation of autonomous driving systems. The simu-
lation platform provides open digital assets (urban layouts,
vehicles, buildings,) and supports flexible specification of
sensor suites, control of all dynamic and static actors, maps
generation and different environmental conditions, includ-
ing weather. In this project, we build up our own synthetic
dataset with CARLA, as source domain data.

MVD is a diverse street-level imagery dataset with
pixelaccurate for understanding street scenes around the
world. There are 25k high-resolution real images with 100
instance-specifically annotated categories and 152 object
categories. Also, there are variety of weather, season, time
of day, camera, and viewpoint. However, weather annota-
tion is not provided; therefore, we label the weather condi-
tions, sunny and cloudy, by ourselves.

5. Experiment
5.1. Evaluation Metric

For each experiment, we use mean intersection-over-
union (mIoU) as metrics to evaluate performance. Let nij
be the number of pixels of class i predicted as class j, let
tj =

∑
j nij be the total number of pixels of class i, and

let N be the number of classes. The definition is shown as
follows:

mIoU =
1

N
·

∑
i nii

ti +
∑
j nij − nii

(9)

5.2. Setting Variants

Supervised. We use a fully-supervised learning to estab-
lish a strong baseline as the upper bound of adaptation ex-
periment.We train images with fine annotations on source
weather as training set. And, we test our model to the same
weather to evaluate performance as the upper bound perfor-
mance.
Before Adapt. We apply the source domain model which
is pre-trained on source weather on target weather without
any adaptation as baseline. The different visual appearances
across weathers would dramatically impact the accuracy of
the segmenter.
After Adapt. We adapt the domain adversarial learning
method to adapt source domain model in an unsupervised
learning. Then, we use this model with adaptation to train
the different target weather to evaluate the transfer learning
performance.

5.3. Synthetic Experiment

We conduct experiments to demonstrate the issue of
weather discrimination even using a state-of-the-art seman-
tic segmenter on synthetic dataset. Then, we will verify the

(Before adapt)
Summer to Fog

(After adapt)
Summer to Fog

(Before adapt)
Summer to Night

(After adapt)
Summer to Night

(Before adapt)
Sunset to Night

(After adapt)
Sunset to Night

Figure 7. Visualization of SYNTHIA experiment.

effectiveness of our proposed unsupervised learning method
test on different weathers datasets domain adaptation task.
By comparing it with a supervised baseline, we show that
that our method would achieve comparable performances
as the supervised training methods in most cases. Then, we
perform an experiment using datasets from CARLA sim-
ulator for autonomous driving systems to prove that our
method could be generally applied to different datasets for
future applications.
Cross Weathers on SYNTHIA Dataset In first experi-
ment, we analyze adaptation across weather patterns by us-
ing SYNTHIA dataset which has synthetic images available
along with weather annotations. We first perform super-
vised training by adapting the same weather both in source
and target domain with fully annotated training data. Then,
we also conduct experiments for before adaptation and af-
ter adaptation case for training on one season and evaluat-
ing on another unannotated season, including summer, rain,
night, fog and sunset. We report quantitative comparisons
of performance supervising learning, before and after adap-
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Table 1. Adaptation across weathers on SYNTHIA. We study the cross weather performance using SYNTHIA dataset. We report
quantitative of supervising learning and comparisons of performance before and after adaptation for training on one weather and evaluating
on another unannotated weather.

Method Source Target Sky Building Road Sidewalk Fence Vegetation Pole Car Traffic sign Pedestrian Lane marking Traffic light mIoU

Supervised Summer Summer 98.23 94.79 97.94 93.28 96.70 82.75 55.53 93.87 51.30 85.70 87.16 53.30 82.54
Before Adapt Summer Rain 95.41 51.28 62.98 19.21 19.32 11.06 6.25 30.23 7.31 7.02 36.30 11.11 25.54
After Adapt Summer Rain 95.06 42.59 59.71 20.38 26.89 23.28 4.49 29.96 9.24 8.62 21.51 11.57 27.18
Supervised Rain Rain 97.62 93.57 97.53 89.58 95.49 78.27 36.34 92.82 43.66 83.04 83.96 56.15 79.00

Before Adapt Summer Fog 84.82 74.44 80.48 67.83 33.77 32.77 29.83 31.53 28.38 21.38 60.51 32.32 41.30
After Adapt Summer Fog 73.40 84.79 81.03 75.86 58.91 39.53 32.29 29.66 30.06 25.09 60.46 34.45 44.61
Supervised Fog Fog 98.10 94.71 97.70 92.32 96.05 80.53 57.03 92.72 51.03 85.27 86.87 64.99 83.11

Before Adapt Summer Night 46.12 63.16 77.78 69.77 36.72 55.25 35.04 57.84 30.72 36.32 48.43 27.85 41.79
After Adapt Summer Night 20.03 66.89 84.44 76.97 54.03 60.05 36.06 50.96 31.51 39.35 61.23 28.16 43.55
Supervised Night Night 98.27 94.71 97.90 91.60 95.03 81.21 51.56 96.54 46.85 84.31 84.88 49.93 81.06

Supervised Sunset Sunset 97.24 94.31 97.43 92.45 96.07 83.56 53.81 92.75 53.03 80.25 85.46 53.20 81.63
Before Adapt Sunset Rain 0.00 42.65 61.79 13.68 14.01 18.31 3.94 16.17 6.21 9.11 33.44 6.02 16.09
After Adapt Sunset Rain 0.00 45.60 58.21 19.03 32.18 31.88 4.01 22.03 7.04 18.57 32.44 9.57 23.38
Supervised Rain Rain 97.62 93.57 97.53 89.58 95.49 78.27 36.34 92.82 43.66 83.04 83.96 56.15 79.00

Before Adapt Sunset Fog 0.02 56.61 81.89 52.94 5.26 41.07 17.61 20.19 21.46 28.59 50.05 30.03 28.98
After Adapt Sunset Fog 0.00 64.33 93.76 80.09 73.40 59.71 24.96 61.82 27.28 46.62 72.08 36.65 49.29
Supervised Fog Fog 98.10 94.71 97.70 92.32 96.05 80.53 57.03 92.72 51.03 85.27 86.87 64.99 83.11

Before Adapt Sunset Night 0.00 62.45 76.01 63.19 29.69 45.92 31.34 39.19 27.30 22.51 57.39 19.83 33.92
After Adapt Sunset Night 0.00 59.26 81.42 65.10 59.31 63.17 31.85 63.83 25.05 32.69 43.83 25.84 39.38
Supervised Night Night 98.27 94.71 97.90 91.60 95.03 81.21 51.56 96.54 46.85 84.31 84.88 49.93 81.06

Table 2. Adaptation across weathers on CARLA. We study the cross weather performance using dataset from CARLA simulator. We
report quantitative of supervising learning and comparisons of performance before and after adaptation for training on one weather and
evaluating on another unannotated weather.

Method Source Target None Buildings Fences Other Pedestrians Poles Roadlines Roads Sidewalks Vegetation Vehicles Walls Traffic signs mIoU

Supervised Clearnoon Clearnoon 93.51 85.43 50.36 53.77 14.96 33.26 77.43 97.70 89.76 79.91 71.81 67.83 51.66 66.72
Before Adapt Clearnoon Wetnoon 93.25 83.38 35.10 38.81 12.50 14.83 73.34 93.61 81.40 72.77 57.47 61.44 56.94 59.60
After Adapt Clearnoon Wetnoon 93.25 82.34 37.18 39.63 10.17 19.26 72.15 93.42 81.25 73.91 60.44 62.27 58.62 60.30
Supervised Wetnoon Wetnoon 93.93 87.23 43.42 48.64 4.85 43.16 78.97 98.04 89.91 80.67 73.34 66.55 78.12 68.22

Clearnoon
to

Clearnoon

(Before adapt)
Clearnoon

to
Wetnoon

(After adapt)
Clearnoon

to
Wetnoon

Figure 8. Visualization of CARLA experiment.

tation, as shown in Table 1. When the source domain is
summer, On average over three weather,our global align-
ment method contributes 2.24% mIoU gain. Most of class
show improve after adaptation, including sidewalk, fence,
vegetation, traffic sign, pedestrian and traffic light. Interest-
ing, when the source domain is sunset, on average over three

Table 3. Adaptation across weathers on MVD. We study the
cross weather performance using real images from MVD dataset.
We report quantitative of supervising learning and comparisons
of performance before and after adaptation for training on one
weather and evaluating on another unannotated weather.

Method Source Target mIoU

Supervised Sunny Sunny 20.62
Before Adapt Sunny Cloudy 20.02
After Adapt Sunny Cloudy 16.93

Before Adapt Cloudy Sunny 15.83
After Adapt Cloudy Sunny 15.31
Supervised Cloudy Cloudy 19.31

weather, our global alignment method contributes 11.02%
mIoU gain, showing significant improvement. We also can
find most of class show improve after adaptation. Further-
more, some typical example of visualization results in Fig-
ure 7 also show that the improved segmentation adaptation
from ”before adaptation” to ”after adaptation”, demonstrat-
ing that our method is able to overcome this large appear-
ance shift from different weather conditions.
Cross Weathers on CARLA dataset We perform an ex-
periment using datasets from CARLA simulator for au-
tonomous driving systems to demonstrate that our method
could be generally applied to different datasets. The Table 2
show that the quantitative comparisons of performance su-
pervising learning,before and after adaptation,using dataset
from CARLA. On average we get 0.7% mIoU improvement
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for adaptation from clearnoon to wetnooon and find that
our adaptation method provides higher mIoU for 7/13 ob-
ject categories. This results prove that our propose method
could be applied to different datasets and also shows im-
provement. In addition, we also present some typical ex-
ample of visualization results in Figure 8, showing that the
domain shift decreasing from ”before adaptation” to ”af-
ter adaptation”. These results confirm that the effective-
ness of our proposed domain adaptation method in different
datasets.

5.4. Experiment on Real Images

In order to examine our method could be applied to the
real image, we perform experiment in the MVD dataset.
The quantitative comparisons of performance supervised
learning, before and after adaptation is reported in Table
3. The results shows that our method does not improve
the performance after adaptation. We can observe that even
the supervised training show the poor results, resulting in
model would not have good performance after adaptation.
We suspect the reason is that there are too many classes in
MVD dataset comparing to datasets from SYNTHIA and
CARLA. Thus, it is necessary to modify our model to apply
in MVD dataset.

6. Conclusion

Reasoning the semantic meaning of road scene is essen-
tial for UAV systems to plan how to act properly. How-
ever, the visual observation of road scene differs a lot un-
der different weather conditions, which may cause self-
driving system drastically fail. From our preliminary ex-
periment, we found that semantic segmentation model de-
grades a lot when applying to different weather conditions.
Therefore, in this project, we aim at learning unsupervised
domain adaptation on road scene segmentation under dif-
ferent weather conditions, which is less studied in litera-
ture. We train semantic segmentation on a certain weather,
and adopt unsupervised adversarial training to transfer the
segmentation model to the target weather condition. First,
we make use of synthetic dash-cam data from SYNTHIA
datasets, to explore the domain shift of cross weather adap-
tation. Next, in order to examine our method could be ap-
plied to the real image, we conduct experiment in the MVD
dataset. Finally, we perform an experiment using datasets
from CARLA simulator for autonomous driving systems to
prove that our method could be generally applied to differ-
ent datasets for future applications. We show by experiment
that our proposed method effectively align cross-weather
data in feature space, and successfully adapt segmentation
model to different weather conditions.
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